The interplay of size and time may make carbon nanotubes the answer to the computer industry's prayers [computerworld.com] as it grapples with pressure to make silicon chips ever-smaller. Or the same factors may turn CNTs into a technological dead end.
Size refers to the dimensions of carbon nanotubes (CNTs) vs. the shrinking geometry of the components on today's silicon chips. A CNT is basically a tube whose wall is 1 carbon atom thick. The tube itself is 1 nanometer (nm, or one billionths of a meter, or one-thousandths of a micron) in diameter, although it can be tens of microns long. Although made of carbon, single-wall CNTs are excellent conductors thanks to quantum conductance, which allows electrons to propagate along the length of the tubes.
Time refers to the progression of Moore's Law, an observation by Intel co-founder Gordon Moore that the number of components on a chip can be expected to double every two years, without an increase in price. According to that, about more eight years from now silicon technology, which has reached 14nm geometry, will reach the atomic level. At that time, presumably the industry will no longer be able to uphold Moore's Law by making silicon components continually smaller.
Will CNTs, with their 1nm geometry, be ready by then?