in gastrointestinal microbiome research, an area rife with new discoveries and opportunities thanks to recent breakthroughs in our understanding of how influential these microbes are to our health, it has until now been very difficult to monitor microbial cells during their travels through mammalian gastrointestinal tracts. Microbial growth rates fluctuate in response to diet, wellness, exercise and the environment, and are affected by inter-organism competition inside the gut. Yet after entering the gut and before exiting, microbes pass through the "dark zone," where they cannot be accessed or analyzed using standard methods and without disrupting observation of natural conditions.
That challenge inspired Cameron Myhrvold, a Hertz graduate fellow at the Wyss Institute and Harvard Medical School and the lead author on the new study, to work with Silver to develop the novel synthetic "mark and recapture" technique known as DCDC [sciencedaily.com].
Using a genetically engineered red-colored fluorescent protein controlled by a gene expression promoter as a visual flag, Myhrvold set out to quite literally mark and recapture E. coli, which are extremely common bacteria found in all mammalian guts. The DCDC strategy -- in which mice were fed the genetically engineered microbes and then their waste collected for analysis -- enabled the team to precisely count the bacterial cell divisions that occurred inside the mice's gastrointestinal tracts. The fluorescing protein "marked" the first generation of E. coli introduced to the gut and therefore allowed the team to calculate the population dynamics by analyzing the proportion of fluorescing cells versus the entire population of cells collected after their "recapture."
For 30-40 years understanding the human genome was considered the Rosetta Stone for human health. Has the study of microbiomes taken its place?