Researchers at Ohio State University report [osu.edu] on a [still active] supernova explosion that is brighter than any other seen before:
Right now, astronomers are viewing a ball of hot gas billions of light years away that is radiating the energy of hundreds of billions of suns. At its heart is an object a little larger than 10 miles across.
And astronomers are not entirely sure what it is.
If, as they suspect, the gas ball is the result of a supernova, then it’s the most powerful supernova ever seen.
In this week’s issue of the journal Science, they report that the object at the center could be a very rare type of star called a magnetar [wikipedia.org]—but one so powerful that it pushes the energy limits allowed by physics.
[...] the explosion that powered ASASSN-15lh stands out for its sheer magnitude. It is 200 times more powerful than the average supernova, 570 billion times brighter than our sun, and 20 times brighter than all the stars in our Milky Way Galaxy combined.
How is this possible?
Todd Thompson [osu.edu], professor of astronomy at Ohio State, offered one possible explanation. The supernova could have spawned an extremely rare type of star called a millisecond magnetar, a rapidly spinning and very dense star with a very strong magnetic field.
To shine so bright, this particular magnetar would also have to spin at least 1,000 times a second, and convert all that rotational energy to light with nearly 100 percent efficiency, Thompson explained. It would be the most extreme example of a magnetar that scientists believe to be physically possible.
Additional reading: abstract [arxiv.org].