Quantum computing is about to get more complex. Researchers have evidence that large molecules made of nickel and chromium can store and process information in the same way bytes do for digital computers [phys.org]. The researchers present algorithms proving it's possible to use supramolecular chemistry to connect "qubits," the basic units for quantum information processing, in Chem on November 10. This approach would generate several kinds of stable qubits that could be connected together into structures called "two-qubit gates."
"We have shown that the chemistry is achievable for bringing together two-qubit gates," says senior author Richard Winpenny, Head of the University of Manchester School of Chemistry. "The molecules can be made and the two-qubit gates assembled. The next step is to show that these two-qubit gates work."
Traditional computers organize and store information in the form of bits, which are written out in long chains of 0s and 1s, whereas quantum computers use qubits, which can be 1, 0, or any superposition between those numbers at the same time, allowing researchers to do much more powerful computations. However, large assemblies of qubits that are stable enough to be applied to perform algorithms don't yet exist.
Winpenny and his collaborators address this problem in their algorithm designs, which combine large molecules to create both two qubits and a bridge between the units, called a quantum gate. These gates are held together through supramolecular chemistry. Studies of the gates show that the quantum information stored in the individual qubits is stored long enough to allow manipulations of the information and hence algorithms. The time information that can be stored is called the coherence time.