In October 2016, the ASTRI telescope prototype, (Image 1) a novel, dual-mirror Schwarzschild-Couder telescope design proposed for the Cherenkov Telescope Array (CTA) [phys.org], passed its biggest test yet by demonstrating a constant point-spread function of a few arc minutes over a large field of view of 10 degrees.
Three classes of telescope types are required to cover the full CTA very-high energy range (20 GeV to 300 TeV): Medium-size telescopes will cover CTA's core energy range (100 GeV to 10 TeV) while the large-size telescopes and small-size telescopes (SSTs) will extend the energy range below 100 GeV and above a few TeV, respectively.
The ASTRI telescope is one of three proposed SST designs being prototyped and tested for CTA's southern hemisphere array. The ASTRI telescope uses an innovative dual-mirror Schwarzschild-Couder configuration with a 4.3 m diameter primary mirror and a 1.8 m monolithic secondary mirror. In 1905, the German physicist and astronomer Karl Schwarzschild proposed a design for a two-mirror telescope intended to eliminate much of the optical aberration across the field of view. This idea, elaborated in 1926 by André Couder, lay dormant for almost a century because it was considered too difficult and expensive to build. In 2007, a study by Vladimir Vassiliev and colleagues at the University of California Los Angeles (UCLA) demonstrated the design's usefulness for atmospheric Cherenkov telescopes.
The design is meant to correct optical aberration.