Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

directed evolution creates enzyme that can create carbon-silicon bonds

Accepted submission by Anonymous Coward at 2016-11-28 21:47:40
Science

http://m.caltech.edu/news/bringing-silicon-life-53049 [caltech.edu]
http://authors.library.caltech.edu/70819/ [caltech.edu]

A new study is the first to show that living organisms can be persuaded to make silicon-carbon bonds—something only chemists had done before. Scientists at Caltech "bred" a bacterial protein to have the ability to make the man-made bonds, a finding that has applications in several industries.

Molecules with silicon-carbon, or organosilicon, compounds are found in pharmaceuticals as well as in many other products, including agricultural chemicals, paints, semiconductors, and computer and TV screens. Currently, these products are made synthetically, since the silicon-carbon bonds are not found in nature.

[...] The ideal candidate turned out to be a protein from a bacterium that grows in hot springs in Iceland. That protein, called cytochrome c, normally shuttles electrons to other proteins, but the researchers found that it also happens to act like an enzyme to create silicon-carbon bonds at low levels. The scientists then mutated the DNA coding for that protein within a region that specifies an iron-containing portion of the protein thought to be responsible for its silicon-carbon bond-forming activity. Next, they tested these mutant enzymes for their ability to make organosilicon compounds better than the original.

After only three rounds, they had created an enzyme that can selectively make silicon-carbon bonds 15 times more efficiently than the best catalyst invented by chemists. Furthermore, the enzyme is highly selective, which means that it makes fewer unwanted byproducts that have to be chemically separated out.

"This iron-based, genetically encoded catalyst is nontoxic, cheaper, and easier to modify compared to other catalysts used in chemical synthesis," says Kan. "The new reaction can also be done at room temperature and in water."


Original Submission