Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 16 submissions in the queue.

Submission Preview

Link to Story

Nanotechnology Enables New Insights Into Chemical Reactions

Accepted submission by Phoenix666 at 2017-01-05 14:36:13
Science

Eighty percent of all products of the chemical industry are manufactured with catalytic processes. Catalysis is also indispensable in energy conversion and treatment of exhaust gases. It is important for these processes to run as quickly and efficiently as possible; that protects the environment while also saving time and conserving resources. Industry is always testing new substances and arrangements that could lead to new and better catalytic processes. Researchers of the Paul Scherrer Institute PSI in Villigen and ETH Zurich have now developed a method for improving the precision of such experiments, which may speed up the search for optimal solutions. At the same time, their method has enabled them to settle a scientific controversy more than 50 years old. They describe their approach in the journal Nature.
...
The researchers built a model system that enables them to study catalysis in the most minute detail [phys.org]. The experiments were carried out mainly at the PSI, and the theoretical basis was worked out at ETH Zurich. For the model experiment the team of Karim and van Bokhoven used iron oxide, which was converted to iron through the addition of hydrogen and with assistance from the catalyst platinum. The platinum splits the molecular hydrogen (H2) into elemental hydrogen (H), which can more easily react with iron oxide.

The main attraction of their model: With state-of-the-art electron-beam lithography, otherwise used mainly in semiconductor technology, the researchers were able to place miniscule particles, consisting of just a few atoms each, on a support. The size of the iron oxide particles was only 60 nanometres, and the platinum particles were even smaller at 30 nanometres - about two-thousandths of the diameter of a human hair. The researchers positioned these particles in pairs on a grid-like model at 15 different distances from each other - in the first grid segment the platinum particle lay precisely on top of the iron oxide particle, and in the 15th segment, the particles lay 45 nanometres apart. In a 16th segment, the iron oxide was completely alone. "Thus we were able to test 16 different situations at once and control the size and spacing of the particles with one-nanometre accuracy", Karim explains. Then they vapourised the model with hydrogen and watched what happened.

For this observation in the molecular domain the team had, in an earlier project, employed a method called "single-particle spectromicroscopy" to analyse tiny particles by means of X-rays. The instruments needed to do this are available at the Swiss Light Source SLS of the PSI, a large-scale research facility that generates high-quality X-ray light. Not only is the precision of the particle positioning new, but the correspondingly accurate observation of chemical reactions - including simultaneous observation of many particles in different situations - had not been possible before: "In previous studies, placement of the nanoparticles of two different materials could be off by up to 30 nanometres", Karim explains.


Original Submission