Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

How to Outwit Noise in Quantum Communication

Accepted submission by Fnord666 at 2017-03-30 02:49:33
Security

How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem [phys.org].

Nowadays we communicate via radio signals and send electrical pulses through long cables. This could change soon, however: Scientists have been working intensely on developing methods for quantum information transfer. This would enable tap-proof data transfer or, one day, even the linking of quantum computers.

Quantum information transfer requires reliable information transfer from one quantum system to the other, which is extremely difficult to achieve. Independently, two research teams – one at the University of Innsbruck and the other at TU Wien (Vienna) - have now developed a new quantum communication protocol [phys.org]. This protocol enables reliable quantum communication even under the presence of contaminating noise. Both research groups work with the same basic concept: To make the protocol immune to the noise, they add an additional element, a so-called quantum oscillator, at both ends of the quantum channel.

Scientists have conducted quantum communication experiments for a long time. "Researchers presented a quantum teleportation protocol already in the 1990s. It permits transferring the state of one quantum system to another by using optical photons," says Benoit Vermersch, Postdoc in Peter Zoller's group at the University of Innsbruck. This works also over great distances but one has to accept that a lot of the photons are lost and only a tiny fraction reaches the detector.

"Our goal was to find a way to reliably transfer a quantum state from one place to the other without having to do it several times to make it work," explains Peter Rabl from the Atominstitut, TU Wien.


Original Submission