For Mazhar Adli, the little glowing dots dancing about on the computer screen are nothing less than the fulfillment of a dream. Those fluorescent dots, moving in real time, are set to illuminate our understanding of the human genome, cancer and other genetic diseases in a way never before possible.
Adli, of the University of Virginia School of Medicine's Department of Biochemistry and Molecular Genetics, has developed a way to track genes inside living cells [phys.org]. He can set them aglow and watch them move in three dimensions, allowing him to map their positions much like star charts record the shifting heavens above. And just as the moon influences the tides, the position of genes influences the effects they have; thus, 3D maps of gene locations could lead scientists to a vastly more sophisticated appreciation of how our genes work and interact—and how they affect our health.
"This has been a dream for a long time," Adli said. "We are able to image basically any region in the genome that we want, in real time, in living cells. It works beautifully. ... With the traditional method, which is the gold standard, basically you will never be able to get this kind of data, because you have to kill the cells to get the imaging. But here we are doing it in live cells and in real time."
Thus was a new drinking game born, to watch genes migrate when you do a shot.