Story automatically generated by StoryBot Version 0.2.2 rel Testing.
Storybot ('Arthur T Knackerbracket') has been converted to Python3
Note: This is the complete story and will need further editing. It may also be covered
by Copyright and thus should be acknowledged and quoted rather than printed in its entirety.
FeedSource: [InnovationsReport]
Time: 2017-08-18 06:50:12 UTC
Original URL: http://www.innovations-report.com/html/report/materials-science/superconductivity-research-reveals-potential-new-state-of-matter.html [innovations-report.com] using utf-8 encoding.
Title: Superconductivity research reveals potential new state of matter
--- --- --- --- --- --- --- Entire Story Below --- --- --- --- --- --- ---
Superconductivity research reveals potential new state of matter
Arthur T Knackerbracket has found the following story [innovations-report.com]:
Common phenomenon could be key to understanding mechanism of unconventional superconductivity
A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. The ability to find similarities and differences among classes of materials with phenomena such as this helps researchers establish the essential ingredients that cause novel functionalities such as superconductivity.
Carefully aligned microstructured devices of CeRhIn5 enabled high field transport measurements that reveal an in-plane symmetry breaking for magnetic fields of approximately 30 Tesla along the tetragonal c-axis. The anomaly size and direction is determined by a small in-plane component of the magnetic field.
Credit: Los Alamos National Laboratory
The high-magnetic-field state of the heavy fermion superconductor CeRhIn5 revealed a so-called electronic nematic state, in which the material's electrons aligned in a way to reduce the symmetry of the original crystal, something that now appears to be universal among unconventional superconductors. Unconventional superconductivity develops near a phase boundary separating magnetically ordered and magnetically disordered phases of a material.
"The appearance of the electronic alignment, called nematic behavior, in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated superconducting materials," said Filip Ronning of Los Alamos National Laboratory, lead author on the paper. Heavy fermions are intermetallic compounds, containing rare earth or actinide elements.
"These heavy fermion materials have a different hierarchy of energy scales than is found in transition metal and organic materials, but they often have similar complex and intertwined physics coupling spin, charge and lattice degrees of freedom," he said.
The work was reported in Nature by staff from the Los Alamos Condensed Matter and Magnet Science group and collaborators.
Using transport measurements near the field-tuned quantum critical point of CeRhIn5 at 50 Tesla, the researchers observed a fluctuating nematic-like state. A nematic state is most well known in liquid crystals, wherein the molecules of the liquid are parallel but not arranged in a periodic array. Nematic-like states have been observed in transition metal systems near magnetic and superconducting phase transitions. The occurrence of this property points to nematicity's correlation with unconventional superconductivity. The difference, however, of the new nematic state found in CeRhIn5 relative to other systems is that it can be easily rotated by the magnetic field direction.
The use of the National High Magnetic Field Laboratory's pulsed field magnet facility at Los Alamos was essential, Ronning noted, due to the large magnetic fields required to access this state. In addition, another essential contribution was the fabrication of micron-sized devices using focused ion-beam milling performed in Germany, which enabled the transport measurements in large magnetic fields.
Superconductivity is extensively used in magnetic resonance imaging (MRI) and in particle accelerators, magnetic fusion devices, and RF and microwave filters, among other uses.
###
Reference: "Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5," Nature 23315 (2017). DOI 10.1038/nature23315.
Researchers: Filip Ronning, Mun K. Chan, Brad J. Ramshaw, Ross D. McDonald, Fedor F. Balakirev, Marcelo Jaime, and Eric D. Bauer (Los Alamos National Laboratory); Luis Balicas (Florida State University); Toni Helm, Kent Shirer, Maya Bachmann, and Philip J.W. Moll (Max-Planck-Institut for Chemical Physics of Solids - Dresden).
Funding: Sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, the Max Planck Society, and the Deutsche Forschungsgemeinschaft (German Research Foundation). Work at the National High Magnetic Field Laboratory was supported by National Science Foundation Cooperative Agreement no. DMR-1157490, the State of Florida, and the US DOE. M.J. acknowledges support from the IMS Rapid Response program at Los Alamos.
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.
Nancy Ambrosiano
nwa@lanl.gov [mailto]
505-667-0471
Nancy Ambrosiano | EurekAlert!
Further reports about:
> Magnetic [soylentnews.org]
> heavy fermion [soylentnews.org]
> magnetic fields [soylentnews.org]
> superconducting materials [soylentnews.org]
> superconductivity [soylentnews.org]
> transition metal [soylentnews.org]
Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University
Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology
Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.
As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...
Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.
Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...
For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.
While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...
An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.
The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...
A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.
Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...
Anzeige
Anzeige
Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology [soylentnews.org]
16.08.2017 | Event News [soylentnews.org]
Sustainability is the business model of tomorrow [soylentnews.org]
04.08.2017 | Event News [soylentnews.org]
Clash of Realities 2017: Registration now open. International Conference at TH Köln [soylentnews.org]
26.07.2017 | Event News [soylentnews.org]
A Map of the Cell’s Power Station [soylentnews.org]
18.08.2017 | Life Sciences [soylentnews.org]
Engineering team images tiny quasicrystals as they form [soylentnews.org]
18.08.2017 | Physics and Astronomy [soylentnews.org]
Researchers printed graphene-like materials with inkjet [soylentnews.org]
18.08.2017 | Materials Sciences [soylentnews.org]
-- submitted from IRC