Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

Bigelow Expandable Activity Module to Continue Stay at the International Space Station

Accepted submission by takyon at 2017-10-04 22:53:44
Science

The Bigelow Expandable Activity Module [wikipedia.org], an experimental inflatable habitat/room attached to the International Space Station, will continue to be used for storage and radiation testing [spacenews.com] in the near future rather than being jettisoned to burn in Earth's atmosphere:

In a procurement filing, NASA said it was planning to issue a sole-source contract to Bigelow Aerospace in the first quarter of fiscal year 2018 for engineering and other services related to extended use of the Bigelow Expandable Activity Module (BEAM). The planned contract, whose value was not disclosed, will cover three years with two additional one-year options.

BEAM was launched to the ISS in April 2016 and, a month and a half later, attached to the station and expanded to its full size. NASA planned to keep BEAM at the station for two years in order to perform engineering tests about the suitability of such expandable, or inflatable, modules for future use on the station or other missions. At the end of the two-year period, NASA planned to jettison BEAM and allow it to destructively reenter the atmosphere.

NASA now sees BEAM, in additional to an engineering testbed, as a place for additional storage on the ISS. "BEAM continues to demonstrate positive performance in space and initial studies have shown that it can be used long-term on the ISS to support the government's needs for on-orbit stowage and for technology demonstrations," the agency said in its procurement filing.

The agency expects to use BEAM to store more than 100 Cargo Transfer Bags, a standard unit of cargo storage on the station that measures about half a cubic meter. That will free up the equivalent of about four payload racks in other modules of the station for research. NASA will also continue to study the module's effectiveness for radiation and debris shielding.

Also at Ars Technica [arstechnica.com].


Original Submission