Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

Revolutionary Imaging Technique Uses CRISPR to Map DNA Mutations

Accepted submission by Phoenix666 at 2017-11-21 15:07:20
Science

Awesome. Bio-hackers, on your marks, get set, go! [phys.org]

A team of scientists led by Virginia Commonwealth University physicist Jason Reed, Ph.D., have developed new nanomapping technology that could transform the way disease-causing genetic mutations are diagnosed and discovered. Described in a study published today in the journal Nature Communications, this novel approach uses high-speed atomic force microscopy (AFM) combined with a CRISPR-based chemical barcoding technique to map DNA nearly as accurately as DNA sequencing while processing large sections of the genome at a much faster rate. What's moreā€”the technology can be powered by parts found in your run-of-the-mill DVD player.

The human genome is made up of billions of DNA base pairs. Unraveled, it stretches to a length of nearly six feet long. When cells divide, they must make a copy of their DNA for the new cell. However, sometimes various sections of the DNA are copied incorrectly or pasted together at the wrong location, leading to genetic mutations that cause diseases such as cancer. DNA sequencing is so precise that it can analyze individual base pairs of DNA. But in order to analyze large sections of the genome to find genetic mutations, technicians must determine millions of tiny sequences and then piece them together with computer software. In contrast, biomedical imaging techniques such as fluorescence in situ hybridization (FISH) can only analyze DNA at a resolution of several hundred thousand base pairs.

Reed's new high-speed AFM method can map DNA to a resolution of tens of base pairs while creating images up to a million base pairs in size. And it does it using a fraction of the amount of specimen required for DNA sequencing.


Original Submission