Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 18 submissions in the queue.

Submission Preview

Link to Story

First-Ever Airplane Powered With Ionic Wind Thrusters

Accepted submission by takyon at 2018-11-22 12:00:43
Science

Silent and Simple Ion Engine Powers a Plane with No Moving Parts [scientificamerican.com]

Behind a thin white veil separating his makeshift lab from joggers at a Massachusetts Institute of Technology indoor track, aerospace engineer Steven Barrett recently test-flew the first-ever airplane powered with ionic wind thrusters—electric engines that generate momentum by creating and firing off charged particles. Using this principle to fly an aircraft has long been, according even to Barrett, a "far-fetched idea" and the stuff of science fiction. But he still wanted to try. "In Star Trek you have shuttlecraft gliding silently past," he says. "I thought, 'We should have aircraft like that.'"

Thinking ionic wind propulsion could fit the bill, he spent eight years studying the technology and then decided to try building a prototype miniature aircraft—albeit one he thought was a little ugly. "It's a kind of dirty yellow color," he says, adding that black paint often contains carbon—which conducts electricity and caused a previous iteration to fry itself. Barrett had slightly higher hopes for the latest prototype, which he dispassionately named Version 2. "Before we started the test flights I thought it had maybe a 50–50 chance," he says. "My colleague at MIT thought it was more like a 1 percent chance it would work."

But unlike its predecessors, which had tumbled to the ground, Version 2 sailed nearly 200 feet through the air at roughly 11 miles per hour (17 kilometers per hour). With no visible exhaust and no roaring jet or whirling propeller—no moving parts at all, in fact—the aircraft seemed silently animated by an ethereal source. "It was very exciting," Barrett says. "Then it crashed into the wall, which wasn't ideal." Still, Version 2 had worked, and Barrett and his colleagues published their results Wednesday in Nature. The flight was a feat others have tried but failed, says Mitchell Walker, an aerospace engineer at Georgia Institute of Technology who did not work on the new plane. "[Barrett] has demonstrated something truly unique," he says.

Now we just need a battery with a 1 GJ/L energy density.

Also at Ars Technica [arstechnica.com] and Engadget [engadget.com].


Original Submission