Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 16 submissions in the queue.

Submission Preview

No link to story available

NASA's Hubble Sees Unexplained Brightness from Colossal Explosion

Accepted submission by aristarchus at 2020-11-13 01:31:24 from the Big Badda Boom! dept.
Science

NASA announces the Hubble Space Telescope captured images of the source of a Gamma-ray Burst. [nasa.gov]

Long ago and far across the universe, an enormous burst of gamma rays unleashed more energy in a half-second than the Sun will produce over its entire 10-billion-year lifetime. In May of 2020, light from the flash finally reached Earth and was first detected by NASA's Neil Gehrels Swift Observatory. Scientists quickly enlisted other telescopes — including NASA's Hubble Space Telescope, the Very Large Array radio observatory, the W. M. Keck Observatory, and the Las Cumbres Observatory Global Telescope network — to study the explosion's aftermath and the host galaxy. It was Hubble that provided the surprise.

Yes, a kilonova, a merger of neutron stars.

Based on X-ray and radio observations from the other observatories, astronomers were baffled by what they saw with Hubble: the near-infrared emission was 10 times brighter than predicted. These results challenge conventional theories of what happens in the aftermath of a short gamma-ray burst. One possibility is that the observations might point to the birth of a massive, highly magnetized neutron star called a magnetar.

"These observations do not fit traditional explanations for short gamma-ray bursts," said study leader Wen-fai Fong of Northwestern University in Evanston, Illinois. "Given what we know about the radio and X-rays from this blast, it just doesn't match up. The near-infrared emission that we're finding with Hubble is way too bright. In terms of trying to fit the puzzle pieces of this gamma-ray burst together, one puzzle piece is not fitting correctly."

Without Hubble, the gamma-ray burst would have appeared like many others, and Fong and her team would not have known about the bizarre infrared behavior. "It's amazing to me that after 10 years of studying the same type of phenomenon, we can discover unprecedented behavior like this," said Fong. "It just reveals the diversity of explosions that the universe is capable of producing, which is very exciting."

"There are more things in the heavens than are dreamt of in your astrophysics."

Neutron star mergers are very rare but are extremely important because scientists think that they are one of the main sources of heavy elements in the universe, such as gold and uranium.

Accompanying a short gamma-ray burst, scientists expect to see a "kilonova" whose peak brightness typically reaches 1,000 times that of a classical nova. Kilonovae are an optical and infrared glow from the radioactive decay of heavy elements and are unique to the merger of two neutron stars, or the merger of a neutron star with a small black hole.

Magnetic Monster?

Fong and her team have discussed several possibilities to explain the unusual brightness that Hubble saw. While most short gamma-ray bursts probably result in a black hole, the two neutron stars that merged in this case may have combined to form a magnetar, a supermassive neutron star with a very powerful magnetic field.

More?

If the extra brightness came from a magnetar that deposited energy into the kilonova material, then within a few years, the team expects the ejecta from the burst to produce light that shows up at radio wavelengths. Follow-up radio observations may ultimately prove that this was a magnetar, and this may explain the origin of such objects.

"With its amazing sensitivity at near-infrared wavelengths, Hubble really sealed the deal with this burst," explained Fong. "Amazingly, Hubble was able to take an image only three days after the burst. Through a series of later images, Hubble showed that a source faded in the aftermath of the explosion. This is as opposed to being a static source that remains unchanged. With these observations, we knew we had not only nabbed the source, but we had also discovered something extremely bright and very unusual. Hubble's angular resolution was also key in pinpointing the position of the burst and precisely measuring the light coming from the merger."

Not bad for a satellite telescope that should be retired.

The team's findings appear in an upcoming issue of The Astrophysical Journal [iop.org].


Original Submission