Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

Did a broken random number generator in Cuba help expose a Russian espionage network?

Accepted submission by owl at 2024-07-07 21:24:59
/dev/random
https://www.mattblaze.org/blog/neinnines/ [mattblaze.org]

I picked up the new book Compromised last week and was intrigued to discover that it may have shed some light on a small (and rather esoteric) cryptologic and espionage mystery that I've been puzzling over for about 15 years. Compromised is primarily a memoir of former FBI counterintelligence agent Peter Strzok's investigation into Russian operations in the lead up to the 2016 presidential election, but this post is not a review of the book or concerned with that aspect of it.

Early in the book, as an almost throwaway bit of background color, Strzok discusses his work in Boston investigating the famous Russian "illegals" espionage network from 2000 until their arrest (and subsequent exchange with Russia) in 2010. "Illegals" are foreign agents operating abroad under false identities and without official or diplomatic cover. In this case, ten Russian illegals were living and working in the US under false Canadian and American identities. (The case inspired the recent TV series The Americans.)

Strzok was the case agent responsible for two of the suspects, Andrey Bezrukov and Elena Vavilova (posing as a Canadian couple under the aliases Donald Heathfield and Tracey Lee Ann Foley). The author recounts watching from the street on Thursday evenings as Vavilova received encrypted shortwave "numbers" transmissions in their Cambridge, MA apartment.

Given that Bezrukov and Vaviloa were indeed, as the FBI suspected, Russian spies, it's not surprising that they were sent messages from headquarters using this method; numbers stations are part of time-honored espionage tradecraft for communicating with covert agents. But their capture may have illustrated how subtle errors can cause these systems to fail badly in practice, even when the cryptography itself is sound.


Original Submission