Stories
Slash Boxes
Comments

SoylentNews is people

Submission Preview

Link to Story

NASA Discovers a Long-Sought Global Electric Field on Earth

Accepted submission by hubie at 2024-09-01 13:45:13 from the electric planet dept.
Science

A rocket team reports the first successful detection of Earth's ambipolar electric field [nasa.gov]:

Using observations from a NASA suborbital rocket, an international team of scientists has, for the first time, successfully measured a planet-wide electric field thought to be as fundamental to Earth as its gravity and magnetic fields. Known as the ambipolar electric field, scientists first hypothesized over 60 years ago that it drove how our planet's atmosphere can escape above Earth's North and South Poles. Measurements from the rocket, NASA's Endurance mission [nasa.gov], have confirmed the existence of the ambipolar field and quantified its strength, revealing its role in driving atmospheric escape and shaping our ionosphere — a layer of the upper atmosphere — more broadly.

Understanding the complex movements and evolution of our planet's atmosphere provides clues not only to the history of Earth but also gives us insight into the mysteries of other planets and determining which ones might be hospitable to life. The paper was published Wednesday, Aug. 28, 2024, in the journal Nature [nature.com].

Since the late 1960s, spacecraft flying over Earth's poles have detected a stream of particles flowing from our atmosphere into space. Theorists predicted this outflow, which they dubbed the "polar wind," spurring research to understand its causes.

Some amount of outflow from our atmosphere was expected. Intense, unfiltered sunlight should cause some particles from our air to escape into space, like steam evaporating from a pot of water. But the observed polar wind was more mysterious. Many particles within it were cold, with no signs they had been heated — yet they were traveling at supersonic speeds.

[...] The hypothesized electric field, generated at the subatomic scale, was expected to be incredibly weak, with its effects felt only over hundreds of miles. For decades, detecting it was beyond the limits of existing technology. In 2016, Collinson and his team got to work inventing a new instrument they thought was up to the task of measuring Earth's ambipolar field.

The team's instruments and ideas were best suited for a suborbital rocket flight launched from the Arctic. In a nod to the ship that carried Ernest Shackleton on his famous 1914 voyage to Antarctica, the team named their mission Endurance. The scientists set a course for Svalbard, a Norwegian archipelago just a few hundred miles from the North Pole and home to the northernmost rocket range in the world.

[...] On May 11, 2022, Endurance launched and reached an altitude of 477.23 miles (768.03 kilometers), splashing down 19 minutes later in the Greenland Sea. Across the 322-mile altitude range where it collected data, Endurance measured a change in electric potential of only 0.55 volts.

"A half a volt is almost nothing — it's only about as strong as a watch battery," Collinson said. "But that's just the right amount to explain the polar wind."

[...] Endurance's discovery has opened many new paths for exploration. The ambipolar field, as a fundamental energy field of our planet alongside gravity and magnetism, may have continuously shaped the evolution of our atmosphere in ways we can now begin to explore. Because it's created by the internal dynamics of an atmosphere, similar electric fields are expected to exist on other planets, including Venus and Mars.

"Any planet with an atmosphere should have an ambipolar field," Collinson said. "Now that we've finally measured it, we can begin learning how it's shaped our planet as well as others over time."

Journal Reference: Collinson, G.A., Glocer, A., Pfaff, R. et al. Earth's ambipolar electrostatic field and its role in ion escape to space. Nature 632, 1021–1025 (2024). https://doi.org/10.1038/s41586-024-07480-3 [doi.org]


Original Submission