In deserts and other arid lands, microbes often form very thin top layers on soil known as biocrusts [phys.org], which behave a bit like Rip Van Winkle. He removed himself from a stressful environment by sleeping for decades, and awoke to a changed world; similarly, the biocrust's microbes lie dormant for long periods until precipitation (such as a sudden downpour) awakens them. Understanding more about the interactions between the microbial communities—also called "microbiomes"—in the biocrusts and their adaptations to their harsh environments could provide important clues to help shed light on the roles of soil microbes in the global carbon cycle.
"In support of DOE's mission to untangle the complexities of the carbon cycle, we're using the biocrust system to examine the specific metabolites in soil and how microbes target these compounds," said Trent Northen, a scientist at Lawrence Berkeley National Laboratory (Berkeley Lab) and the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility. "Dissolved organic carbon (DOC) and soil microbes are typically studied as broad groups, and we wanted to examine the specific relationship between the diversity of soils metabolites and the diversity of microbes."
In a study published September 22, 2015 in Nature Communications, a team led by Northen used seven bacterial isolates from desert biocrusts, one of them the cyanobacterium Microcoleus vaginatus -sequenced by the DOE JGI—that had been the focus of earlier work. The isolates were cultivated in what Northen describes as "a virtual smorgasbord" of metabolites containing almost 500 compounds until they stopped growing. Northen and his collaborators deployed a set of tools that he calls "exometabolomics" which harnesses the analytical capabilities of the latest mass spectrometry techniques to quantitatively measure how each microbes and the biocrust community transforms complex mixtures of metabolites, in this case, from soil.
The research seems particularly apropos to the search for life on Mars, and, barring discovery of Martian life, the potential for terraforming there.