Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 19 submissions in the queue.

Submission Preview

Link to Story

Whatever Happened to the Molecular Computer?

Accepted submission by Phoenix666 at 2015-09-28 14:03:00
Science

Forty years ago, a New York University graduate student named Arieh Aviram opened his Ph.D. dissertation with a bold suggestion: “Taking a clue from nature, [which] utilizes molecules for the carrying out of many physical phenomena, it may be possible to miniaturize electronic components down to molecular size.” What Aviram was proposing was revolutionary: leapfrogging the ongoing miniaturization trend of Moore’s Law by substituting single organic molecules for silicon transistors and diodes [ieee.org].
...
Aviram and Ratner’s bold idea sank into obscurity.
...
Bulk ensembles of molecular electronics have made their way into commercial displays, and recent high-profile breakthroughs include single-molecule light-emitting diodes and carbon nanotube transistors coupled to silicon in a monolithic integrated circuit. Other, less flashy but more technically relevant results have come, for example, from Danny Porath and his colleagues at Hebrew University in Jerusalem, who have measured electrical transport in wires made of DNA; such wires are a self-assembled alternative to copper interconnects. Latha Venkataraman’s group at Columbia University has measured single-molecule diodes to a rectification ratio of more than 200 times—a critical step for maintaining a high signal gain as devices shrink. And Christian Nijhuis and his coworkers at the National University of Singapore were able to measure the rectification changes that occurred when they replaced an individual functional group—just a handful of atoms—in a nanometer-size molecule. This is exactly the type of control dreamed of by Aviram and Ratner.


Original Submission