Slash Boxes

SoylentNews is people

posted by martyb on Sunday August 18 2019, @12:54PM   Printer-friendly
from the my-first-hard-disk-held-40-MB dept.

Micron shared details of its 3rd generation of "10 nm-class" DRAM fabrication:

Micron's 3rd Generation 10 nm-class (1Z nm) manufacturing process for DRAM will allow the company to increase the bit density, enhance the performance, and the lower power consumption of its DRAM chips as compared to its 2nd Generation 10 nm-class (1Y nm) technology. In particular, the company says that its 16 Gb DDR4 device consumes 40% less power than two 8 Gb DDR4 DRAMs (presumably at the same clocks). Meanwhile, Micron's 16 Gb LPDDR4X ICs will bring an up to 10% power saving. Because of the higher bit density that the new 1Z nm technology provides, it will be cheaper for Micron to produce high-capacity (e.g., 16 Gb) memory chips for lower-cost, high-capacity memory sub-systems.

[...] As for mobile memory, Micron's 16 Gb LPDDR4X chips are rated for transfer rates up to 4266 MT/s. Furthermore, along with offering LPDDR4X DRAM packages with up to 16 GB (8x16Gb) of LPDDR4X for high-end smartphones, Micron will offer UFS-based multichip packages (uMCP4) that integrate NAND for storage and DRAM. The company's uMCP4 family of products aimed at mainstream handsets will include offerings ranging from 64GB+3GB to 256GB+8GB (NAND+DRAM).

Finally, a reasonable amount of RAM for smartphones. But I think we may need at least 24 GB, if not 32 GB.

Related: Xiaomi Announces Smartphones with 10 GB of RAM
Samsung Mass Producing LPDDR5 DRAM (12 Gb x 8 for 12 GB Packages)

Original Submission

This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by JoeMerchant on Monday August 19 2019, @01:11AM (1 child)

    by JoeMerchant (3937) on Monday August 19 2019, @01:11AM (#881914)

    I've tried to get enthused about making a little touch-screen cased Ras-Pi4, but... it's just not worth the effort when you can buy a complete smartphone with stupendous specs for ~$150.

    At this rate, a phone can be a desktop replacement - Chromecast or WiDi or whatever your flavor to the monitor, Bluetooth to the HIDs, and the same mobile device when you're not sitting at a real screen with a real keyboard and mouse.

    When I get some time, I'm thinking a good project would be a "LoJack" app for a smartphone that's wired into whatever vehicle you want to monitor - GoogleFi data SIM for real-time video/gps tracking, accelerometer/gyros to detect unexpected movement, bluetooth detection of your phone in your pocket to disarm. If you want to get clever with the finance side you can probably get a good enough new phone for under $80 to run the app on, with no monthly fee and real-time reassurance that your tracked asset (car, boat, bike) is safely not being hooned by crackheads.

    🌻🌻 []
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2  
  • (Score: 2) by takyon on Monday August 19 2019, @04:28AM

    by takyon (881) <{takyon} {at} {}> on Monday August 19 2019, @04:28AM (#881972) Journal

    I've got the FLIRC case on Pi4. Now it runs at below 52°C most of the time.

    Pi4 is OK for now, but I predict that the 3DSoC [] concept will make its way into ARM chips and Broadcom within the next 10 years. And then we could see early 2020s HEDT performance in an ARM chip with less power consumption than Pi4. Meaning that systems that are OK like Pi4 could get turbocharged into "faster than you know what to do with" territory. Not sure how GPUs will be affected, but the industry should eventually shoot for 1 petaflops [] in the mobile SoC form factor for standalone VR headsets (16K res, high framerate, raytracing, etc.). The rumor mill has it that ARM will make a major GPU announcement next year, and Samsung is licensing Radeon GPU technology from AMD for mobile chips [], so there's going to be more focus on ARM graphics going forward.

    Comparing Raspberry Pi to phones for desktop use, the 4 GB Pi4 could run you about $80 if including a micro-HDMI cable, power supply, a 32 GB microSD card, and sales tax. $95 if you throw in a FLIRC case at the non-discount price. And then shipping for Pi or case. From this article [], it seems like phones in that price range are packing 2-3 GB of RAM. Some of them have octa-core processors that may be faster if they are on a better node or newer ARM core design. IMO, it's at least in the same ballpark spec-wise, but the Pi gives you 4 USB ports, Ethernet, and dual displays. These are going to make it damn useful as a desktop. You could add a dock to the phone but that's extra cost if you're comparing. I'm thinking of getting an RTL-SDR [] to occupy one of the Pi4's USB3 ports, but I hear it's not working properly with it yet. The other 3 are good for storage, keyboard, and mouse.

    I agree that docking is where we are going in the future. Smartphones that everyone carries constantly will pack a powerful 3DSoC, act as your desktop computer when docked, with cloud or local backups for data in case you throw the thing in a ditch, losing your "desktop" computer. They will become so utterly powerful, phones will take over all current desktop roles and more than 16 GB of RAM may be desirable (all of this amount may need to be integrated directly with the 3DSoC). For the remaining desktop enthusiasts, new applications will have to be created in order to exploit/waste all the performance a desktop 3DSoC would have.

    [SIG] 10/28/2017: Soylent Upgrade v14 []